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Have you ever wondered how scientists determine the size or age of the universe?
These bulk properties are a bit mysterious unless you can calculate them for yourself.
The physical model of the expanding universe is the primary focus of our class and
you’ll be studying it in detail. This model relies on conservation of energy (kinetic
and potential) and the thermodynamic properties of fluids and it is calculated in a
coordinate system that expands with a scale factor, a(t). To tie the model to reality,
we have to understand how it impacts observable quantities like the redshift of a
galaxy and the brightness or size of a galaxy. After all, it is only when we compare
observations to a particular model that we find out whether the model is true or not.

In the first part of this project, we will use a(t) to compute observable quantities. In
the second part, we will use the general solution to the Friedman Equation to
determine a(t) for any universe of our choosing. This allows us to calculate the age
and size of the universe. Then we’ll explore the parameter space to determine how
close Ryden’s Benchmark model comes to the current best-measured parameters.

Part 1 — Observable Quantities

Telescopes generally point at astronomical sources to measure their photon
intensity, spectra, and angular extent on the sky. At large distances these
observables depend on the geometry and expansion rate of the universe. In fact, the
expansion leads directly to an observed reddening of distant objects. We define this
redshift in terms of the wavelength of light. If a distant galaxy emits light of a
wavelength, Ae, (e is for emitted) we will observe its redshifted wavelength, Ao, (0 is
for observed) and the redshift is defined as (Ryden Eqn 2.4)

z= (Ao = Ae)/ e (1)

The spectral lines of hydrogen, helium, and a number of other elements are routinely
measured in undergraduate laboratories and you’ve probably seen this yourself
when you studied optics. Remember that the each wavelength of light is a specific
color. When the color changes, so does the wavelength. In astronomy, a
spectrometer is used to measure the observed wavelength of astronomical objects
with strong spectral lines. Since we already know the emitted wavelengths from our
laboratory studies we can determine how the wavelength has changed and we call
the relative change the redshift. A redshift can result from a Doppler shift due to the
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velocity of the astronomical source or from the expansion of the universe. In general,
redshifts are a combination of the two. Beyond a redshift of about 0.03, however, the
expansion of the universe dominates and the Doppler shift can be neglected.

To understand redshifts due to the expanding universe we need to see how length is
defined during the expansion. The Robertson-Walker metric expresses the observed
length, ds, in terms of the general relativistic space-time elements in spherical

coordinates, dt, dr, and dQ = /d6? + sin260d¢>2. (Ryden 3.25)

ds? = —c?dt? + a(t)?[dr? + Sk (r)?dQ?] (2)

where c is the speed of light, a(t) is a unitless scale factor that describes the spatial
expansion of the metric, and Sk(r) accounts for the curvature of space.

Rysin (r/Ry) fork = +1
Se(r) =4r fork =0 (3)
Rysinh (r/R,) forkx = -1

where Ry is the radius of curvature of the metric. Our universe appears to be flat
with Sk(r) = r, but the metric allows for positive curvature, K = +1, and negative
curvature, K = -1. Notice that the flat metric reduces to spherical coordinates with
the additional special relativistic term, -cdt, and the expansion scale factor, a(t). For
convenience we set the scale factor to unity at the present time, a(t,) = 1.

The curvature, Ry, and the sign of the curvature, «, are determined from the Friedman
equation: (Ryden 4.31)

Kk  HE
=% -1 (4)
The curvature, R, is related to whether the total energy density is greater or less

than the critical energy density (Qo= Qm,0+Rr0+2,,0). This is one of the few times
that we can determine two variables with one equation. For example, if ;>1, then
the right-hand side is positive, k=+1, and with this information we can solve for the
radius of curvature, R, = <

Ho/Qo—1"

Locations at fixed coordinates, r, 6, and ¢ in this metric are called comoving because
they are observed to move in relation to each other by the scale factor, a(t). We use
light traveling between comoving emission and observation points to measure the
comoving distance interval, dr. Let's set the origin of the coordinate system at the
telescope that observes the light. In this coordinate system a photon travels radially
toward the observation point at a constant angle, 8 and ¢, from the emitting source.
This means that dQ2=0. Furthermore, light travels along null geodesics defined by

ds = 0 which allows us to solve for the comoving distance interval, dr = ¢ dt/a(t).
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Two important results come from this. First, if we consider the wavelength of a
photon A = cdt where dt is the period of the photon's oscillation, we find that this is
a(te)dr at the emission time and a(t,)dr when it is observed. For these comoving
observers, dr is the same at both times and it is easy to show that the scale factor of
the expanding universe, a(t), is related to the redshift by: (Ryden Eqn 3.46)

zZ = 1 —_
T alte)

1 (5)
where we have set today's scale factor to unity, a(t,) = 1. By measuring the redshift,
z, of an astronomical source as a shift in wavelength, we learn the value of the scale
factor at the time the light was emitted.

Second, we find the line-of-sight distance to the source at the time we observe it.
This is called the conformal distance and it is found by integrating over time from the
observed time, t,, backward to the emission time, t.. (Ryden Egns. 3.39 and 5.35)

D Dcd f ot (6)
= r=c¢ —_
¢ 0 to a(t)

You may remember the importance of the proper distance in relativity. It is defined
as the distance observed at a single time, t,. When time is a constant, dt = 0 and the
radial proper distance is D,(t;) = [ ds = a(t;) [ dr. The proper distance today is
the conformal distance D,(t,)=D.. In an expanding universe the proper distance was
smaller at the time the light was emitted Dp(t.)=a(te)D..

Now that we have good definitions for distance, we can talk about what people see in
their telescopes. The distance factors are derived in Ryden Ch. 7 for the flat universe
where Sk(Dp)=Dp. Here we extend the discussion to include curvature. The observed
width of a galaxy on the sky, 4Q, is related to the galaxy’s diameter:

true galaxy diameter = D4 482 (7)

where Dais the angular diameter distance. To get a feel for this, imagine that one
night you look up and see the moon. If you extend your arm to point at one edge of
the moon and then move it to the other edge of the moon, the angle that your arm
moves is A£2. A close look at the metric shows that D4 is simply defined by the
coefficients of the dQ2 term:

Dy = a(te)Sk(Dp) (8)

Back in geometry, the galaxy diameter was called the arc length and you may
recognize that Eqn. 7 in flat polar coordinates becomes ds = rdé.

Similarly, the observed brightness of a source depends on how far away it is. Imagine
that you are looking at headlights in the distance on a dark night. As the headlights
get closer to you, you perceive them as brighter. The headlights don’t change their
luminosity, rather your observation of them changes. The observed brightness of a
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source is characterized by the flux of photons into the aperture of a telescope during
the exposure time and has units of photons/(m? s). Since photons are emitted in all
directions, the fraction that make it into a fixed aperture at a distance, r, goes as the
inverse of a spherical surface area, 1/4ar2. The brightness also depends on the
intrinsic luminosity of the source defined by the total number of emitted
photons/second in all directions. The observed flux is related to the luminosity by
the luminosity distance, D;.

measured flux = true luminosity/(41D?) (9

The luminosity distance is constructed to make the equation look geometrical, but
since the photons spread out over a spherical area related to d€2 and are also

redshifted during transit, it depends both on the curvature of the universe and the
redshift.

D, = Sk (Dp)/a(t.) (10)

Finally, it is rare to measure a luminosity or flux directly. Usually we find ourselves
integrating the flux and describing the brightness of a source by its magnitude. The
absolute magnitude, M, of a source is given by: (Ryden Eqn. 7.48)

Dy
M=m-5 IOg(TpC) (11)

where m is the apparent magnitude and the second term is the distance modulus,
DM = 5log(DL/ 10pc). Notice that the distance modulus depends only on the
luminosity distance which can be computed directly from the metric at any emission
time. A prediction of DM exists for every specific cosmological model of Sk(r) and
a(t.). Direct tests of the expansion have been made by measuring the apparent
magnitude for sources with known absolute magnitude and comparing the
difference, m - M, to the predicted distance modulus, DM. These tests lead to the
2011 Nobel Prize in Physics awarded to Saul Perlmutter, Brian Schmidt, and Adam
Riess.

Key point: All of these measurable quantities can be computed if we can just figure
out a(t), Ry, and H.

There are a few cases where the scale factor can be computed analytically and in this
part of the project, it's good to start with one of those. The solution for the Matter
Only universe (£2p= Qm,0=1) is

2 3
Ho(te = t) = 5 (a2 = 1) (12)

where Hois the Hubble constant. (note: Hois not a function of t.-t,, but rather, the left-
hand side is HyX(t, — t,).) The function is plotted as a dotted line in Ryden’s Figure
6.1 and we reproduce it in Figure 1 below. We will choose t,=now, and measure t, as
a time in the past or future. Right now, t.=to, and the left-hand side is zero. What is
a(now) so that the right-hand side is also zero? Let’s use a(t) to understand redshift,
and the distance factors.
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General Instructions: If you wish to do this assignment without the step-by-step
instructions, feel free to pick any computing language of your choice. Start by
defining the parameters Ho=70 km/s/Mpcand £=1, the constant, ¢, and conversions.
Since we want to get about 4 significant figures of accuracy out of this computation,
we need to use constants and conversions that are accurate to 6 significant figures as
shown in Table 1 below. Next, make an array of log(a) from -6 to 0.5, incrementing in
steps of 0.01 or so. Make additional arrays from the first to hold the values of g, z,
Ho(t.-t,). Debug the results using columns A-F in the spreadsheet shown in Figure 4
and by reproducing Figure 1. What is the age of the universe?

Next, integrate Eqn. 6 to find D.being very careful to set the integration limits from ¢,
to te. You may use a trapezoid method, Simpson’s method, or Romberg’s method. Set
Dc= 0 at toand then integrate backward to an emission time, t., in the past. Again,
check that Dcis correct using the spreadsheet in Figure 4. Next, find xk and Ry so that
you can compute Si(D¢). To check positive curvature: set Qo= 1.05 and check that Sk =
8275.9522 Mpc where log(a) = -6. Then set 20=0.95 and check that Sk= 8845.4898.
Mpc where log(a) = -6. Finally, compute Dc/DH, D4/DH, D1/DH, and DM. Recreate the
plots in Figures 1 and 3. Skip ahead to page 10 where it says Report.

Excel Instructions: If you prefer more explanation and a detailed approach, here’s
how to do the computation in Excel.

A) Our first objective is to compute a(t). One way to do this is to invert Eqn. 12 to
find an expression for a(te). In later calculations, it won’t be possible to do this, so
we want to get good at using Eqn.12 as is. The time scales of interest to us extend
from seconds to billions of years. To cover all the time scales of interest, start
with log(a) instead of a. Take a look at the example spreadsheet in Figure 4 to see
how the log(a) column should look. Create a spreadsheet column log(a). Compute
a from the log(a) and then use Eqn. 12 to compute Ho(te - to) from a. This should
produce columns A, B, and C in your spreadsheet. Check them by recreating the
dotted line in Figure 1 for yourself.

B) Column D in the spreadsheet shown in Figure 4 is emission time, t. Itis easily
computed using Ho= 70 km/s/Mpc and the time right now, t, = 0 seconds. For
parameters, like Ho, you’ll want to put them in a cell at the top and use them in
equations. If you type them in all over the place, you'll have to debug the code
every time you change their value. If you don’t know how to anchor a number in

speed of light 2.99792x10° km/s

Seconds/year (including leap seconds) 3.15581x10’

Mpc/km 3.24078 %107

Table 1: Parameters and conversions with 6 significant figures.
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Figure 1: Recreation of the dotted line in the lower panel of Ryden Fig. 6.1 for
the Matter Only universe.

an Excel equation, please get help. It's something every college student should
learn to do. Notice that the spreadsheet is color-coded. Blue cells are
computed with equations (they shouldn’t have any numbers typed in by hand).
Black cells are cells you have to enter by hand.

Column E is the age of the universe in years. Notice that the emission time is
measured backward from now and that age is measured forward from the Big
Bang. If we start the age at 0 years, what is the age today?

Compute the redshift column using Eqn. 5.

We will want to compute some more parameters and constants before tackling
the distance factors. It's important to use constants and conversion factors that
are accurate to 6 significant figures. See Table 1. Put them at the top of the
spreadsheet with the cosmological parameters like Hy.

Go back and fix the conversions that you used in part C. They need to be
accurate. You'll also need to calculate the Hubble Time, t#= 1/Ho, and the Hubble
Distance, Du=c/Ho. So find a spot at the top to pre-compute them. Check that you
are using the constants and conversions correctly using the color code. Blue cells
should have equations that refer only to other cells. The black cells have all the
input information needed.

The distance factors involve the integral shown in Eqn. 6. To compute the integral
numerically, we’ll find the area under the function, f{t)=c/a(t) where f{t) is
plotted on the y-axis. A schematic of this is shown in Figure 2.
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0t t, b
The area of the shaded trapezoid above is

Area = (zﬁ 1) /(1) ;L /()

Figure 2: Schematic used to describe numerical integration. Note that the y-axis of the

G)

plot is f(t).

Column G in the spreadsheet below is the area of each trapezoid. The time
difference comes from Column D and the scale factors come from Column B.
Compute column G.

To integrate Eqn. 6, we need to add up the trapezoidal areas in column G between
our integration limits. This is where it gets tricky because we don’t want to start
at the beginning of the universe, but rather at the lower integration limit, which is
the current time, t,. We want Dcto be zero at the current time: put a zero in the
column H cell where t. = 0. This means that light emitted right now is at zero
distance from us. Now we’ll add the trapezoids above to find the distance
travelled by light emitted in the past. It's simplest if you have an equation like

H9 = H10+G9 in your spreadsheet. Make sure column H matches the example
spreadsheet below.

Next we need to tackle the curvature which depends on Q. We will need to use
some IF() statements in Excel to compute k via Eqn. 4. These work by assigning
the cell to either the first or second value based on whether the logical test is true
or false: cell value=IF(logical_test, value_if_true, value_if false). In our case,
we're going to determine whether x is +1, 0, or -1 based on the value of Q.

k=IF(Qo=1, 0, IF(Q>1,1, -1))
Look at this logic closely because one IF statement can only decide between two
choices. We need to nest two of them to decide between 3 choices. In the

spreadsheet below, N2 is set using the Excel equation:

=IF(N1=1,0,IF(N1>1,1,-1))
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H) Curvature also has a characteristic radius of curvature, Rp. Go ahead and compute

)

)

itin cell N3. Don’t worry about the fact that you need to divide by zero when x=0.
For a flat universe, the curvature is infinite. This is probably the first time that
#DIV/0! is the right answer.

You'll need more IF statements to compute Sk(Dc) in column ]J. Take a look at Eqn.
3. The logic is:

Sk=IF( k=0, D, IF( k=+1, Rysin(Dc/Ry), Rosinh(D/Ro) ))

Debug the curvature terms, check that the Sk= Dc when Qo=1. Check positive
curvature: set (o= 1.05 and check that Sx = 8275.9522 Mpc in the first bin, where
log(a) = -6. Then set 0=0.95 and check that Sk=8845.4898 Mpc in the first bin,
where log(a) = -6.

Finally, you'll need to compute the angular diameter distance and the luminosity
distance normalized by the Hubble Distance. See Eqns. 8 and 10. The Hubble
Distance, D1 = ¢/Ho, should be pre-computed at the top of your spreadsheet. The
last column is the distance modulus. Itis computed from Eqn. 11. Figure 3 shows
how the distance factors depend on redshift. When columns L, M, and N are
debugged, you're done. Congratulations!
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Figure 3: Plots of measurable parameters. These are recreations of Figures in
reference [2] by David Hogg.
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Report: Recreate Figure 1 and the plots in Figure 3 in your report. Write a few
paragraphs explaining the implications of the Matter Only universe: How old is this
universe? How far away is the edge of visibility? This is called the horizon distance
and is defined by D. at the time of the Big Bang. Light emitted beyond this distance
has not reached planet Earth. Does this universe continue to expand forever or does
it start to contract at some time in the future? According to Eqn. 7, do galaxies
appear smaller (AQ) at greater redshifts? Explain carefully using your plots.
According to Eqn. 9, does the measured brightness go down for objects at greater
redshifts?

Part 2 — General Solution to the Friedman Equation

Barbara Ryden derives the Friedman Equation, the fluid equation, and the equation
of state in chapter 4. Together, they are solved in chapters 5 & 6. We will concentrate
here on the general solution: (Ryden Eqn. 6.8),

a te
da' ,
=H, | dt (13)
Q1’,0 O-m,o 12
1 \[a’z + < + QA‘OCL + (1 - Qo) to

where the history of the universe is embodied in the time, t., and the expansion scale
factor, a that is governed by the () parameters measured at their current epoch. This
equation includes the radiation, matter, and dark energy density as well as the
resulting curvature term (1-{20). The right-hand side is easily integrated giving the

familiar H, ftto dt' = Hy(t, — ty). The left-hand side is more complicated and has no

nice analytical solution. Furthermore, it can’t be inverted into the form a(t) = f(t) like
the Matter Only Universe. Be sure that you understand the derivation of Eqn. 13 and
what it means. Once you trust the physics behind the equation, you can use it to
compute interesting facts about the universe.

General Instructions: Start with the same log(a) array as you did previously.
Compute g, and z as before. Next numerically integrate the left-hand-side of Eqn. 13
and set it equal to Ho(t.-t,). You can use any integration method of your choice or an
ODE solver. Just like before, you'll have to be careful with the integration limits. Set
a=1 when t.=toand then integrate backward to t. in the past. Check that you get the
results shown in column F of Figure 5 for the Ryden’s Benchmark cosmology.
Recreate Figure 6 below.

When the general solution for a(t) is done, use it to compute the distance factors
from Part 1. This shouldn’t require you to re-code the distance factors. To avoid
problems you want to use the code from before because it’s already debugged.

Excel Instructions:

A) Open a new sheet by clicking on a new tab at the bottom of your Excel sheet. Copy
log(a) into it from the previous sheet. Then compute a and z from log(a). Setup
the parameters needed for the benchmark cosmology. Be careful that you set

10
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Q0= Qm,0+Qr0+Q2, 0. Now we need to compute the integral in Eqn. 13. The

integrand is
1

Q Q
\j r,0+ m,0+QA’0alz+(1_QO) (14)

2 !
al a

fla’) =

We compute the area under this function as we did before by finding the area in a
series of trapezoids. Compute Column F in Figure 5 being careful with the
integration limits as before. Set Ho(te-to)=0 at te=to then add the area of the
trapezoids upward in the table from this point. Check that your results look like
Figure 6.

_ A | B | c l [+ J PO — F |

1 |General Solution to Friedman Equation Parameters

2 | Omega_M 0.3

3 Omega_r 8.40E-05

4 | Omega_Lambd 0.7

5 | Omega_tot 1.000084

6 | Ho 70

7 |

8 |

9 |

10 log(a) a z f(a) trap. area Ho(te-to)

11 | -6 0.000001 999999 1.09E-04 2.57E-12 -9.64E-01

12 | -5.99 1.0233E-06 977236.221 1.11E-04 2.69E-12 -9.64E-01

13 | -5.98 1.0471E-06 954991.586 1.14E-04 2.81E-12 -9.64E-01

14 | -5.97 1.0715E-06 933253.301 1.17E-04 2.95E-12 -9.64E-01

15 | -5.96 1.0965E-06 912009.839 1.19E-04 3.09E-12 -9.64E-01

16 | -5.95  1.122E-06 891249.938 1.22E-04 3.23E-12 -9.64E-01
597 -0.15 0.70794578 0.41253754 1.14E+00 1.87E-02 -3.14E-01
598 | -0.14 0.72443596 0.38038426 1.13E+00 1.50E-02 -2.95E-01
599 | -0.13  0.74131024 0.34896288 1.13E+00 1.94E-02 -2.76E-01
600 | -0.12 0.75857758 0.31825674 1.12E+00 1.97E-02 -2.57E-01
601 | -0.11  0.77624712 0.288245955 1.11E+00 2.00E-02 -2.37E-01
602 | -0.1  0.79432823 0.25892541 1.10E+00 2.04E-02 -2.17E-01
603 -0.09_ 0.81283052_  0.23026877 1.10E+00 2.07E-02 -1.96E-01
604 | -0.087 0.83176377] 0.20226443 =(B605-Bp04)*0.5%(D
605 | -0.07 0.17489755 13E-0 -
606 | -0.06 0.87096359 0.14815362 1.07E+00 2.16E-02 -1.34E-01
607 -0.05 0.89125094 0.12201845 1.06E+00 2.19E-02 -1.12E-01
608 | -0.04 0.91201084  0.0964782 1.05E+00 2.21E-02 -9.01E-02
609 | -0.03  0.9332543 0.07151931 1.04E+00 2.24E-02 -6.80E-02
610 | -0.02 0.95499259 0.04712855 1.02E+00 2.27E-02 -4.56E-02
611 | -0.01 0.97723722 0.02329299 1.01E+00 2.29E-02 -2.29E-02
612 | 0 1 0 1.00E+00 2.31E-02 0.00E+00
613 | 0.01 1.02329299 -0.0227628 9.87E-01 2.34E-02 2.31E-02
614 | 0.02 1.04712855 -0.0450074 9.74E-01 2.36E-02 4.65E-02
615 | 0.03 1.07151931 -0.0667457 9.61E-01 2.38E-02 7.01E-02
616 | 0.04 1.0964782 -0.0879892 9.47E-01 2.40E-02 9.39E-02
617 0.05 1.12201845 -0.1087491 9.33E-01 2.42E-02 1.18E-01
618 | 0.06 1.14815362 -0.1290364 9.19E-01 2.44E-02 1.42E-01
619 | 0.07 1.17489755  -0.148862 9.05E-01 2.46E-02 1.67E-01
620 | 0.08 1.20226443 -0.1682362 8.90E-01 2.47E-02 1.91E-01
621 | 0.09 1.23026877 -0.1871695 8.76E-01 2.49E-02 2.16E-01
622 0.1 1.25892541 -0.2056718 8.61E-01 2.50E-02 2.41E-01
£22 N1 1 Iea% 4088 -N 297278720 Q A7E.N 9 E2E.NY 9 ARAE.N

Figure 5: Spreadsheet showing the general solution to the Friedman Equation
for the Benchmark Model.
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Figure 6: Scale factor as a function of time for the Benchmark Model.

B) Create another “Arbitrary” spreadsheet by copying the Matter Only spreadsheet

into a new spreadsheet and relabeling the Ho(t.-to) column as shown in Figure 7.
Plots don’t copy correctly so don’t bring them along. The numbers in the black
and blue columns can be copied without changing anything! Let’s hook the new
spreadsheet (red columns) up to the General Solution. Set the Ho(t.-to) column
equal to the general solution from your previous spreadsheet as shown below.
“General Solution to Friedman” is the name of the spreadsheet in Figure 5. Set Ho
and Qo to the value in the other spreadsheet as well.

DON'T CHANGE ANY EQUATIONS! THEY SHOULD ALREADY WORK! In this part
we're just hooking up the general solution to the computation of the observables.
When you change the parameters in the other spreadsheet, this spreadsheet will
update with the answers. Check this out by setting the omega parameters to the
Matter Only case. Your Arbitrary spreadsheet should match your Matter Only
spreadsheet from part 1 of the project.

J A ] B l C I D l E l F
1 |Arbitrary Ho (km/s/Mpc) = 70 ¢ (km
_2 | seconds/\
_3 | Mpc,
< time since
5 Genaral Solution emission time Big Bang
6 log(a) a Ho(te-to) te (sec) age (years)
7 -6 0.000001 -9.64E-01 -4,24821E+17 0.000E+00 9
8 -5.99 1.0233E-06 -9.64E-01 -4,24821E+17 3.585E-02 97723
9 -5.98 1.0471E-06 -9.64E-01 -4.24821E+17 7.339E-02 95499
( -5.97 1.0715E-06| ='General solution to Friedman'lF14 | 1.127E-01 933253
11 -5.96 1.0965E-06 “9.64E-01 4. 24821E+17 1.538E-01 912008
12 -8 a8 1 129F-NA -Q RAF-N1 -4 24R1F 417 1 QRAQF-N1 fQ124Q

Figure 7: Computation for an arbitrary cosmology. Notice how column C is taken
from the spreadsheet shown in Figure 5.
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Report: The following can be done without modifying the columns of your
spreadsheet. From here on out you should just be changing the parameters in the
spreadsheet with the General Solution to the Friedman Equation.

A. Benchmark Universe: Recreate Figure 6 in your report. Verify that you compute

B.

the same age of the universe that Ryden computes in Table 6.2.

Now we're ready to explore several different cosmologies. Make a table with the
following columns: name of cosmology, Ho, Qr,0, Qm,0, Qa,0, 0, K, Ro, age of the
universe, horizon distance. Fill it in for the Benchmark cosmology.

Fill in the table for the A-Only and Matter Only universes. The Matter Only
universe is the universe from Part 1. Check that your new Arbitrary spreadsheet
produces exactly the same answers! If not, you have introduced a bug in the new
spreadsheets.

Another interesting universe is the Low Density universe. With so much empty
space in the universe, lets investigate a universe that contains just baryonic
matter: (o= Qm,0=0.05. What is the curvature of this universe? Add it to your
table of universes. Why is this universe interesting? In the next few weeks we
will find out that this universe is not the one that we actually live in even though
it has all the matter that we’ve ever studied in the lab. We are going to look at
observations and see that they differ from this universe.

Where were you in 19987 Until 1998 it was believed that (4,,=0, and
astrophysicists focused their research on measuring (), to determine the
curvature of the universe. The scale factor a(t) was so poorly known that the
uncertainty in the age of the universe was about 50%, i.e. somewhere between 5
and 20 billion years. Today, the age of the universe is known to be 13.75 + 0.11
billion years. This precision is better than 1% and represents a giant leap in
knowledge about the origin of the universe. In just the past 12 years, the )
parameters have been measured with extreme precision. The latest parameters
can be found in Table 8 on page 39 of the WMAP paper published in January of
2010 [3]. (There is a link to the online version of the paper in the references.) Use
the parameters in the WMAP+BAO+Ho column. WMAP did not measure Qr,0
which was measured by the earlier COBE satellite mission. Please use the value
Qr,0 = 8.40E-5 for this parameter. Add the WMAP cosmology to your table. How
well does your age agree with the age in the paper?

Ryden’s Benchmark model serves the important purpose of computing the
expansion history pretty well in light of the rapid changes in the field. It is
impossible to produce new editions of the book every time a paper is published.
With this code, you can always produce the current age and distances as the
density parameters become available. Please calculate on the percent difference
in age and size between the Benchmark and WMAP cosmologies. Can you expect
the computations in the textbook to be valid to a few percent?

Recreate the top panel in Ryden Fig. 6.6 for your cosmologies. To get all the
curves on one plot you'll need to copy the redshift and D./Dy columns to a new
spreadsheet and create the plot in the new sheet. Which curves are similar to the
WMAP curves at high redshift? At low redshift?

Please include the table and plot in your report. Write explanations as needed to
answer the various questions.

13



Expansion History of the Universe

Part 3 — Ruling out the Low Density and Matter Only universes

Ryden’s Figure 7.5 shows how data are used to constrain cosmological parameters.
Many new type la supernovae have been discovered since 1999. The most recent
presentation of these data are in Figure 9 on page 19 in reference [4].

A.

B.

Explain the differences between the Ryden’s Figure 7.5 and Figure 9 in the new
supernova paper.

Use all 5 cosmologies explored in Part 2 to create theory curves for the upper
panel in Figure 9. (This problem shouldn’t require any additional coding. You can
copy and paste results from your spreadsheest into a new spreadsheet for plotting.)
Subtract the other theory predictions from the WMAP prediction to recreate the
lower panel in Figure 9. The difference plot is called a residual. It is easier to
compare data sets to theory predictions in this form since the differences are
maximized.

Theoretical predictions exist for many things that do not actually exist. The data
tell us what actually exists. Which of the theories we’ve explored are NOT
consistent with this data set? How do you feel about saying that the data rule out
these possibilities?

Part 4 — Measuring the size of distant galaxies

Go to the Galaxy Zoo Hubble project [5]: http://www.galaxyzoo.org/. Classify 50
galaxies and as you do so, save a variety of galaxies including galaxies with
interesting structure to your album. When you’re done, go to “my galaxies”, select a
galaxy and then click on “more information”.

A.

Choose a galaxy with a z>0.5 and compute its size. You'll need to click on “Show
Scale” to get the angular scale. How big is the galaxy at the time it emitted the
light captured by the telescope? (Please use the WMAP universe in from Part 2 to
answer the question. You can interpolate between the redshift values in the table
to find accurate distance factors.)

How does it compare to the Milky Way galaxy? How does it compare to other
galaxies in the Local Group of galaxies?

Include a screen shot of the galaxy and it’s information in your report.
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